Triple knock-out of CNTF, LIF, and CT-1 defines cooperative and distinct roles of these neurotrophic factors for motoneuron maintenance and function.

نویسندگان

  • Bettina Holtmann
  • Stefan Wiese
  • Mohtashem Samsam
  • Katja Grohmann
  • Diane Pennica
  • Rudolf Martini
  • Michael Sendtner
چکیده

Members of the ciliary neurotrophic factor (CNTF)-leukemia inhibitory factor (LIF) gene family play an essential role for survival of developing and postnatal motoneurons. When subunits of the shared receptor complex are inactivated by homologous recombination, the mice die at approximately birth and exhibit reduced numbers of motoneurons in the spinal cord and brainstem nuclei. However, mice in which cntf, lif, or cardiotrophin-1 (ct-1) are inactivated can survive and show less motoneuron cell loss. This suggests cooperative and redundant roles of these ligands. However, their cooperative functions are not well understood. We generated cntf/lif/ct-1 triple-knock-out and combinations of double-knock-out mice to study the individual and combined roles of CNTF, LIF and CT-1 on postnatal motoneuron survival and function. Triple-knock-out mice exhibit increased motoneuron cell loss in the lumbar spinal cord that correlates with muscle weakness during early postnatal development. LIF deficiency leads to pronounced loss of distal axons and motor endplate alterations, whereas CNTF-and/or CT-1-deficient mice do not show significant changes in morphology of these structures. In cntf/lif/ct-1 triple-knock-out mice, various degrees of muscle fiber type grouping are found, indicating that denervation and reinnervation had occurred. We conclude from these findings that CNTF, LIF, and CT-1 have distinct functions for motoneuron survival and function and that LIF plays a more important role for postnatal maintenance of distal axons and motor endplates than CNTF or CT-1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cardiotrophin-1, a muscle-derived cytokine, is required for the survival of subpopulations of developing motoneurons.

Developing motoneurons require trophic support from their target, the skeletal muscle. Despite a large number of neurotrophic molecules with survival-promoting activity for isolated embryonic motoneurons, those factors that are required for motoneuron survival during development are still not known. Cytokines of the ciliary neurotrophic factor (CNTF)-leukemia inhibitory factor (LIF) family have...

متن کامل

Glial reactivity in ciliary neurotrophic factor-deficient mice after optic nerve lesion.

There is evidence that ciliary neurotrophic factor (CNTF), in addition to its neurotrophic activity, positively regulates astrogliosis after CNS injury. CNTF and its receptor, CNTFRalpha, are strongly upregulated in activated astrocytes. Application of CNTF upregulates GFAP expression in cultured astrocytes and induces various aspects of gliosis in the intact brain. Here we examined whether ina...

متن کامل

Actions of CNTF and neurotrophins on degenerating motoneurons: preclinical studies and clinical implications.

Spinal motoneurons innervating skeletal muscle were amongst the first neurons shown to require the presence of their target cells to develop appropriately. Isolated embryonic chick and rat motoneurons have been used to identify neurotrophic factors and cytokines capable of supporting the survival of developing motoneurons. Such factors include ciliary neurotrophic factor (CNTF), which is presen...

متن کامل

Endogenous ciliary neurotrophic factor is a lesion factor for axotomized motoneurons in adult mice.

Ciliary neurotrophic factor (CNTF) is an abundant cytosolic molecule in myelinating Schwann cells of adult rodents. In newborn animals in which CNTF is not yet expressed, exogenous CNTF that is locally administered very effectively protects motoneurons from degeneration by axotomy. To evaluate whether endogenous CNTF, released after nerve injury from the cytosol of Schwann cells, supports moton...

متن کامل

Neuroprotective and axon growth-promoting effects following inflammatory stimulation on mature retinal ganglion cells in mice depend on ciliary neurotrophic factor and leukemia inhibitory factor.

After optic nerve injury retinal ganglion cells (RGCs) normally fail to regenerate axons in the optic nerve and undergo apoptosis. However, lens injury (LI) or intravitreal application of zymosan switch RGCs into an active regenerative state, enabling these neurons to survive axotomy and to regenerate axons into the injured optic nerve. Several factors have been proposed to mediate the benefici...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 25 7  شماره 

صفحات  -

تاریخ انتشار 2005